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LETTER TO THE EDITOR 

Cluster renormalisation study of site lattice animals in two 
and three dimensions 

Fereydoon Family 
Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, 
CA 93106, USA and Department of Physics, Emory University, Atlanta, GA 30322, USA? 

Received 1 December 1982 

Abstract. We have studied site lattice animals using the cluster renormalisation (CR) 
approach previously applied to bond animals. The exponent U, characterising the 
asymptotic behaviour of the mean-square radius of gyration of site animals, and the fractal 
dimension df = l /v,  are determined in two and three dimensions. We find v = 0.649+0.009 
and v -0.51 in two and three dimensions, respectively. In addition we have studied 
restricted valence site animals on a triangular lattice using a single-parameter CR approach. 

The configurational statistics of lattice animals, i.e. connected clusters of sites or bonds 
on a d-dimensional lattice, in the asymptotic scaling limit when the number of sites 
(or bonds) in an animal tends to infinity, has been a subject of considerable recent 
interest, because of its applications in a variety of diverse problems including the cell 
growth problem (see Stauffer 1978, Peters et a1 1979, and references therein), 
homogeneous turbulence in fluids (Hentschel and Procaccia 1982), spinodal decompo- 
sition (Klein 1981), percolation (see e.g. Stauffer 1979, 1981, Essam 1980, Gaunt 
1980, and references therein) and the statistics of dilute branched polymers (Lubensky 
and Isaacson 1979, Family 1980, Family and Coniglio 1980, Parisi and Sourlas 1981). 

One of the most important scaling properties of lattice animals, which serves to 
characterise their configurational properties, is the dependence of the mean-square 
radius of gyration (RL) on the number of elements N in an animal. In the limit 
N + m , 5 = ( R N )  growsas 2 1/2 

5 - N ’  (1) 
where v is the exponent describing the power law divergence of this length. An 
alternative for characterising the conformation of a lattice animal is to relate it to an 
‘effective’ or fractal dimension dr (see e.g. Stanley 1977, Stauffer 1979, Mandelbrot 
1982, and references therein). If we treat N as the ‘mass’ of an animal, since 
(mass) - (radius)df, then by relation (l), 

dr= l / ~ .  (2) 
If dt is less than the spatial dimension d, the animals are highly ramified structures; 
if dr = d, they are compact (Family and Coniglio 1980). 

Recently a number of techniques, including Monte Carlo (Stauffer 1978, Herrmann 
1979, Peters et al 1979, Gould and Holl 1981), series analysis (Peters et a1 1979), 
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field theory (Lubensky and Isaacson 1979, Parisi and Sourlas 1981), position space 
renormalisation group (Family 1980, Family and Coniglio 1980), finite size scaling 
(Derrida and de Sbze 1982), and Flory type approximation (Isaacson and Lubensky 
1980, Daoud and Joanny 1981), have been used to estimate v in various dimensions. 
In particular, Parisi and Sourlas (1981) found a connection between lattice animals 
and the Lee-Yang edge singularity problem and from it obtained the exact result 
v = in d = 3. However, their relation cannot be used in d = 2, and the present 
estimate v = 0.61-0.66 (see table 2) is not very conclusive. In view of the widespread 
interest in lattice animals, and because presently there is no consensus on the value 
of v in d = 2-which is needed to understand turbulence in three dimensions (Hentschel 
and Procaccia 1982)-an independent calculation of v would be of interest. 

In this letter we present the first direct renormalisation group (RG) calculation of 
the exponent v and the fractal dimension dr for site lattice animals in d = 2 , 3  using 
a RG approach-which we call the cluster renormalisation (at)-previously applied 
(Family 1980) to bond lattice animals (dilute branched polymers). In addition, we 
use CR to study the restricted valence site animal problem (Gaunt et a1 1979) on a 
triangular lattice. In a restricted valence animal the number of nearest neighbours of 
a site is restricted to be less than or equal to some prescribed value U, such that v c 2, 
where t is the coordination number of the lattice. This problem is of interest as a 
model of steric hindrance in branched polymers and polymer gels. Recent studies 
(Whittington et a1 1979) have shown that the dominant singularity of the generating 
function of site animals on a triangular lattice can be characterised by different 
exponents for U = 2 than for v 3 3. In this letter we study the effect of valence on the 
exponent v using a single parameter CR approach. 

The essential ideas of the CR approach for lattice animals have been presented 
before (Family 1980) where they were applied to bond animals (dilute branched 
polymers) on a square lattice. In this approach we investigate the manner in which 
the global connectivity of lattice animals changes upon repeated length rescaling. We 
carry out the length rescaling by first dividing the lattice into cells of linear dimension 
b, as shown in figure 1, and rescaling to cells of linear dimension 1. Since in the lattice 
animal problem we are interested in the statistics of all distinct clusters starting at the 
origin of an infinite lattice, we only rescale a cell if it contains a single cluster originating 
at a fixed origin on the cell. In addition, since we are interested in the connectivity 
properties of lattice animals, we also use the general connectivity rule (for a review 
of the connectivity rule and its applications in polymer models, see Stanley et a1 
(1982), and references therein) for rescaling an animal within a cell into a rescaled 
cell. For site lattice animals we define d types of connectivity rules on a d-dimensional 
cell and denote them by ri, where i = 0, 1, . . . , d.  In ro a cell is rescaled to an occupied 
site, if it contains a single connected cluster that, starting from a fixed origin (which 
for all rules we choose to be the lower left-hand corner of the cell, as shown in figure 
l ) ,  extends in any of the d possible directions across the cell; whereas ri ( i  2 1) requires 
a site animal starting from the origin to span in i specific directions. We expect all 
these rules to converge to the same results in the large cell limit. 

The RG transformations for site animals are constructed similarly to bond animals 
(Family 1980). We first assign a fugacity K to each site in an animal and then 
determine the generating function 
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Figure 1. Examples of the types of cells used in CR calculations for (a) the square lattice, 
( b )  the triangular lattice, and (c) the simple cubic lattice. Each cell contains b d  sites and 
under the RG transformation is rescaled to a single site. The origin of the cell where all 
site animals originate is denoted by 0. 

where c i (n )  is the total number of site animals with n sites spanning according to rule 
ri on a cell of side b. We define the recursion relation for the RG transformation by 
requiring that the generating function for the spanning animals is invariant on the 
original and rescaled levels. For connectivity rule ri, this leads to a recursion relation 
of the form 

K ’ = R i ( K ;  b )  (4) 

where the renormalised fugacity K’ is the generating function of a single site on the 
rescaled lattice. 

We have used a computer program to determine the exact recursion relations for 
cells of size 6 = 2-5 on a square lattice using rules ro, rl  and r2. These recursion 
relations each have two trivial (stable) fixed points at K* = K’ = K = 0 and 00, and 
one critical (unstable) fixed point at an intermediate value of K =K’ = K*. The value 
of K at the unstable fixed point gives an estimate of the critical fugacity K,= 1/p, 
where p is the site lattice animal growth parameter (Sykes and Glen 1976). The 
exponent v and the fractal dimension dt are obtained from 

( 5 )  
where A is the eigenvalue of the linearised RG transformation. 

In analogy with percolation (Reynolds et a1 1978) and bond lattice animals (Family 
1980), we also define a cell-to-cell transformation in which an implicit RG transforma- 
tion from a cell of size b to a cell of size 6’ is constructed. Whereas the results for 

v = dr = In b/ln A 
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the cell-to-site transformations are expected to improve with increasing b, the cell-to- 
cell transformation results improve as b/b'  -* 1. 

The results for K* and v with both types of transformations are given in table 1 
for site lattice animals on the square lattice. From table 1 we see that the results of 
the cell-to-cell procedure improve as b/b '+ 1, Fnd are in agreement with the estimates 
obtained by other techniques (see table 2). 

Furthermore, from previous RG studies (Reynolds et a1 1980, Eschbach et a1 1981, 
Family and Reynolds 1981), it appears that the error in the cell-to-site finite b results 
vanishes as b + CO in the following form: 

(6) 

Thus, the error decreases as b increases in a predictable fashion, and the results for 
v (b )  can be used to extrapolate the limiting behaviour (b +CO).  Fitting the data of 
table 1 to (6), we have determined the best estimate for Y-' for each of the three 
different rules separately. We find Y-' = df = 1.59, 1.54 and 1.48 for rules ro, r1 and 
r2,  respectively. However, a much better procedure is to combine the three sets of 
data, because asymptotically they are expected to converge to the same result. As 
shown in figure 2, we have determined v-' by finding the value of the intercept which 
gives the best overall fit to the three sets of data simultaneously. From this procedure 
we find v-l = df = 1.54*0.02, i.e. Y = 0,649* 0.009. This result is listed in table 2 

- 1  
Y ( 6 )  = v-l +cl(ln b)-' +c2(ln b ) - 2 .  

( a )  Rule ro. 

Table 1. The critical exponent v and the fixed point K* for site lattice animals on a 
square lattice, using ( a )  rule ro, (b )  rule r1, and ( c )  rule r2,  The results are for a 
transformation from cells of side b to cells of side b', corresponding to a length rescaling 
of b/b'. The case 6' = 1 is the cell-to-site transformation with a rescaling length b. 

(b)  Rule r l .  

b b ' = l  2 3 4 b b ' = l  2 3 4 

0.7976 k* 0.3247 
v 0.7437 0.6684 
K* 0.3330 0.3388 
v 0.7210 0.6583 0.6434 
K* 0.3236 0.3232 0.3111 

0.7093 0.6532 0.6402 0.6372 
f;* 0.3132 0.3111 0.3013 0.2930 

( c )  Rule r2 .  

0.7094 k* 0.4142 
0.6987 0.6784 

f;* 0.3754 0.3483 
v 0.6912 0.6697 0.6564 
K* 0.3487 0.3287 0.3134 

0.6867 0.6657 0.6535 0.6485 k* 0.3302 0.3148 0.3029 0.2941 

~~ 

b b ' = 1  2 3 4 

0.6040 * k* 0.5321 
0.6236 0.6658 k* 0.4363 0.3716 
0.6326 0.6686 0.6735 k* 0.3869 0.3436 0.3213 

v 0.6374 0.6701 0.6732 0.6776 
K* 0.3573 0.3258 0.3091 0.2985 
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along with the estimates obtained by other techniques for site animals, bond animals, 
as well as bond animals without loops (i.e. branching trees), which are all expected 
to be in the same universality class. 

I I  I I 

Table 2. Comparison of the present CR result for Y and d f  for site lattice animals in d = 2 
with the results obtained by other methods for ( a )  site animals, ( b )  bond animals and (c) 
bond animals without loops. 

- 
/ Rule r2 

- 

Method V dr 

1.2-  

( a )  Site animals: 
Cluster renormalisation 0.649*0.009 1.54*0.02 
Monte Carlo 0.660*0.007'"' 1.52* 0.02 

0.65'b' 1.54 
0.65 f 0.02"' 1.54*0.05 

Field theory 0.6 l'd' 1.64 
Flory theory 0.625'" 1.60 
Finite size scaling 0.6408*0.0003"' 1.5605 *0.0007 

Cluster renormalisation 0.6370"' 1.570 

Cluster renormalisation 0.6273"' 1.594 
Monte Carlo 0.6 15"' 1.63 

( b )  Bond animals: 

( c )  Bond animals wirhour 10ops:'~' 

'a' Stauffer (1978), Herrmann (1979), 'b) Peters er a1 (1979), "' Gould a@ Holl (1981), 
(d) Parisi and Sourlas (1981), "' Isaacson and Lubensky (1980), Daoud and Joanny (1981), "' Derrida and de Seze (1982), (') Family (1980), "'' Animals with and without loops are 
in the same universality class (Lubensky and Isaacson 1979, Family 1980, Gaunt et a1 
1982), 'i) Seitz and Klein (1981). 

- 

t 

0 3 0.4 0.8 1.2 1.6 

l l l n  b 

Figure 2. Plot of our estimates of v-' against l / l n  6 from table 1. The curves through 
the points are the best simultaneous quadratic fit to our three sets of data. 



L102 Letter to the Editor 

In d = 3, we have determined the recursion relations for site animals using rules 
ro, rl ,  r2  and r3 on a cell of size b = 2 on the simple cubic lattice. The values of v and 
K *  obtained from these recursion relations are given in table 3 .  It is not possible to 
obtain a closed-form recursion relation for larger cells within a reasonable computer 
time. However, it is possible to give a rough estimate of v in d = 3 in the following 
way. Let us define the ratio f ( b )  = v /F(b) ,  where v is the correct value of this exponent 
whereas ; (b)  is the average value of v obtained from RG calculations with a cell of 
size b using rules ro-rd. From the data of tables 1 and 2 we find f(2) = 0.91 in d = 2. 
Assuming that f(2) is independent of d and using the value F(2) = 0.56 determined 
from the data in table 3 ,  we find that v = 0.51 in d = 3. Although this simple procedure 
is not expected to be too reliable, its estimate is in reasonable agreement with the 
exact result v = 1/2 (Parisi and Sourlas 1981), and the Monte Carlo result v = 
0.53 k0.02 (Gould and Holl 1981) for site animals and v ~ 0 . 4 6  (Seitz and Klein 
1981) for bond animals without loops, which are in the same universality class as 
bond animals (Lubensky and Isaacson 1979, Family 1980, 1982). 

Table 3. The exponent w and the fixed point K* for site lattice animals on a simple cubic 
lattice with b = 2 using rules 10-r3. 

Rule ro I1 12  r3 

v 0.7120 0.5807 0.4928 0.4583 
K* 0.1824 0.2452 0.2973 0.3280 

Proceeding to the restricted valence problem, we use the CR approach to investigate 
whether restricting the maximum allowed valence of sites in an animal on a triangular 
lattice changes the universality class. 

We have determined the recursion relations for site animals with maximum valence 
U = 2-6 on cells of size b = 2 , 3  on a triangular lattice (see figure 1) using rule r l .  For 
U = 2, the animals are the neighbour-avoiding walks (Whittington et a1 1979) and 
were previously studied by the CR approach on the square and on the simple cubic 
lattices (Family 1981). 

The recursion relations for U = 2 on a cell of size b = 2, using rule r l ,  is 

K ’ = K 2 + 2 K 3  (7) 
which has a fixed point at K *  = 0.5000 and v = 0.7565. Because the b = 2 cell is too 
small, there is only one recursion relation for U 2 3; namely 

K ’ = K 2 + 3 K 3 + K 4  (8) 
which has a fixed point at K *  =0.4142 and v =0.7094. For the cell of size b = 3 ,  
different recursion relations are obtained for U = 2-6. The results for v and K *  for 
the b = 3 cell of the triangular lattice using rule r l  are given in table 4 for U = 2-6. 

The results of table 4 show that v decreases as U increases. However, its maximum 
change occurs between v = 2 and 3 ,  and for v 2 3 it does not change very much. This 
is consistent with the series results (Whittington et af 1979), showing that site animals 
with U = 2 are in a different universality class from site animals with U L 3 ,  and site 
animals with U b 3 are in the same universality class as unrestricted animals (v  = z ) .  
These results are also consistent with a two-parameter CR calculation (Family 1980), 
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Table 4. The exponent U and the fixed point K *  for restricted valence site animals on a 
6 = 3 cell of the triangular lattice. 

V 2 3 4 5 6 

V 0.7856 0.7176 0.7034 0.7003 0.7001 
~~~~ ~~ 

K* 0.4902 0.3692 0.3566 0.3550 0.3549 

showing that self avoiding-walks (U = 2 bond animals) are in a different universality 
class from bond lattice animals (U = 2). 

In summary, we have studied site lattice animals using the CR approach previously 
applied to bond animals (Family 1980), and have obtained the exponent v and the 
fractal dimension dr in d = 2 and 3. Our result v = 0.649*0.009 in d = 2 agrees very 
well with the finite-size scaling calculation (Derrida and de Sbze 1982). However, 
the estimate v = 0.61 obtained by Parisi and Sourlas (1981) using field-theoretic and 
extrapolation schemes, and the Flory result v = 5 / 8  = 0.625 (Isaacson and Lubensky 
1980, Daoud and Joanny 1981), are outside the error bars. Our estimate v t 0 . 5 1  in 
d = 3 is in reasonable agreement with the exact result v = 4 (Parisi and Sourlas 1981), 
and the Monte Carlo results v = 0.53 f 0.02 (Gould and Holl 1981) for site animals 
and v ~ 0 . 4 6  (Seitz and Klein 1981) for bond animals without loops. 

We have also studied restricted valence site animals on the triangular lattice using 
a single-parameter CR approach. Our result suggests that site animals with U = 2 
(neighbour-avoiding walks) are in a different universality class from site animals with 
U a 3, but site animals with U 2 3 are in the same universality class as unrestricted 
animals (U = 2). 

I would like to thank Harvey Gould and Gene Stanley for useful discussions and 
comments. I would also like to thank Phil Pincus and Walther Kohn for their kind 
hospitality during my stay at ITP. This research was supported by grants from the 
Emory University Research Fund, Research Corporation, and NSF. 
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